

System-Level
Testing Principles

For Web-Based Software
Applications

By Jenny Riecken

2 System-Level Testing Principles for Web-Based Software Applications

 Table of Contents

Table of Contents

Introduction .. 3

What this Manual Contains ... 4

System-Level Testing Principles .. 5

High-Level Test Areas to Consider .. 6

Functional Testing .. 7

Testing Success Paths ... 7

Testing Failure Paths .. 8

User Interface Testing .. 9

Data Testing ... 11

Data load testing ... 11

Verifying data against the back end 13

Setting up test data ... 13

Security Testing .. 14

Performance Testing .. 15

Browser/Operating System Testing 15

Regression Testing ... 16

Testing unchanged features from previous versions 16

Testing bug fixes ... 17

Regression testing at the end of the test cycle.................. 17

Glossary ... 18

System-Level Testing Principles for Web-Based Software Applications 3

 Introduction

Introduction

This manual will give you a good understanding of how to approach

software testing at a system level. You will learn the basic principles

of system-level testing, and the high-level test areas to consider. You

will also learn what types of tests to run in each area.

Testing is a very important part of the software development process.

Unfortunately, this essential job often falls to people who have not

been trained to do software testing.

If you have suddenly been thrust into a testing role without training,

you may feel overwhelmed. You may not know where to start, or how

to make sure you’re covering everything. Gaps in testing can lead to

missed issues. In some cases, major issues might not be found until the

software has already been released to customers.

Once you have a good understanding of system-level testing, you can

be confident that you are not missing any major test areas. You will

also understand exactly what you need to test in each area.

This manual will be useful to you if you need to learn the basics of

system-level testing, or if you need to remind yourself of these before

starting a new test plan.

Although this manual focuses on testing a web-based software

application, most of the principles apply to all types of testing in a

product development environment.

“Quality is never an

accident; it is always the

result of intelligent effort”

 – John Ruskin

Note: Once you are familiar with the basics of system-level testing,

you should also look up details on:

• how to write a test plan

• how to write test cases

• how to run and track test cases

• how to report and track issues

 These topics are not covered in this manual.

4 System-Level Testing Principles for Web-Based Software Applications

 What This Manual Contains

What this Manual Contains

System-Level Testing Principles – gives a definition of system-level

testing and explains why it is important

High-Level Test Areas to Consider – lists the basic areas to consider

when testing a web-based software application.

• Functional Testing – describes what functional testing is,

including success paths and failure paths. Gives examples of

some success paths, and lists some general failure paths to

consider testing.

• User Interface Testing – describes how user interface testing

differs from functional testing, and lists some types of user

interface tests that you should consider running.

• Data Testing – describes the two main types of data testing

you may need to consider. Also discusses why you may need

test data, and how to set it up.

• Security Testing – describes what type of security testing

needs to be done for a web application, and gives examples of

some security tests that you should consider running.

• Performance Testing – describes what performance testing is,

and gives examples of some performance tests.

• Browser/Operating System Testing – describes what

browser/operating system testing is and gives you a general test

strategy for this area.

• Regression Testing – describes the three kind of regression

testing, and discusses when and how you should use each one.

Glossary – gives definitions of the technical terms used in this

manual. Some of these terms are also italicized and defined in the text.

System-Level Testing Principles for Web-Based Software Applications 5

 System-Level Testing Principles

System-Level Testing Principles

System-level testing means testing a system as a whole, rather than

focusing narrowly on individual parts. This is important because

everything in a system is connected, and if you focus too narrowly on

a certain area you might miss related issues that happen elsewhere in

the system.

For example, if you are testing to make sure that you can enter data

into a certain field, you might miss that entering a certain special

character causes corruption in the database that makes another part of

the program not work properly.

In system-level testing you not only test what the program is supposed

to do, but also make sure that it behaves well when things don’t go

perfectly. Users do a lot of things that programmers don’t intend or

expect them to do, and you need to make sure the program can handle

these actions.

When performing system-level testing, you should be methodical but

also look at the big picture. As well, you can add a valuable

perspective by not only testing what the programmers have produced,

but also by approaching the system from the user’s point of view.

The main principle of

system-level testing:
confirming that each part

of a system does what it’s

supposed to is only the

first step!

6 System-Level Testing Principles for Web-Based Software Applications

 High-Level Test Areas to Consider

High-Level Test Areas to Consider

When you are planning to test a web-based software application, you

should consider the basic test areas shown in Figure 1 below.

Performance
Testing

Browser/Operating
System Testing

Regression Testing

Security Testing

Data Testing

User Interface
Testing

Functional Testing

Testing Success
Paths

Data load testing

Verifying data
against the back

end

Setting up test data

Testing unchanged
features from

previous versions

Testing bug fixes

Regression testing
at the end of the

test cycle

Figure 1: High-level test areas to consider.

System-Level Testing Principles for Web-Based Software Applications 7

 High-Level Test Areas to Consider

Functional Testing

Functional testing is making sure the application does what it is

supposed to do, as described in its specifications. This is very detailed

testing in which you go through every possible action that a user might

perform.

Testing Success Paths

A success path (sometimes known as a “happy path”) is a sequence of

events in which the user successfully performs an action in the way the

designer intended. For example, if Google was testing their search

engine, a simple success path might be entering a search term into the

search box, clicking on “Search”, and getting a page with results.

When testing success paths, you should go through every action that

the application designers intend to let a user perform. Table 1 gives a

few examples.

Table 1: Examples of Success Paths

Action Expected Result

Try to log in to the system with a

valid user ID and password.

You should be successfully

logged in.

Try to change your password. Your password should be

changed successfully.

Log in as a certain type of user. You should have access to the

expected set of actions for the

type of user you are logged in as.

Click on the “FAQ” link. You should be brought to the

FAQ.

Click on the shopping cart icon. You should be brought to your

shopping cart page, containing

all items you have previously

added to your cart (and have not

deleted).

“The happy path is the

path through a system

where everything works,

the data is correct, the

system stays up, and the

users are well-behaved.”

- Chuck Musciano

8 System-Level Testing Principles for Web-Based Software Applications

 High-Level Test Areas to Consider

Testing Failure Paths

A failure path is a sequence of events in which the user does

something unexpected. The application should handle this well. It

might prevent the user from performing the action or display a useful

error message once the user has performed the action. In the worst

case, the application should fail in a controlled way.

Use your imagination when testing failure paths. If you wonder what

would happen if you did something, try it and see. A user is almost

guaranteed to try it eventually.

Table 2 gives some examples of failure paths to test.

Table 2: Examples of Failure Paths

Action Expected Result

Enter the special characters

~`!@#$%^&*()_+-

={}|[]\:”;’<>?,./ into all input

fields

The characters will be accepted

without causing a problem, or

the software will prevent you

from entering them, or the

software will give you a useful

error message after you enter

them.

Click all buttons and links on

each page, even if they are not

part of the normal flow of events.

They should all work as

expected and not cause any

errors or crashes.

Test around the boundaries of

input fields.

For example, for a field which

should accept any number from 5

to 15, try entering 4 and 5, 15

and 16, and something in the

middle (such as 7).

The field should accept numbers

in its range (5, 15, and 7)

The field should not accept

numbers outside its range (4,

16).

“Testers don’t like to

break things; they like to

dispel the illusion that

things work.”

- Cem Kaner, James Bach,

and Bret Pettichord.

System-Level Testing Principles for Web-Based Software Applications 9

 High-Level Test Areas to Consider

Action Expected Result

Test character limits.

If a field should only accept 20

characters, try 20 characters and

21 characters.

If a field accepts an unlimited

number of characters, paste in a

very large number of characters.

A field with a character limit

(say, 20) should accept a number

of characters up to its limit (20)

but should not accept more (21).

If you enter too many characters,

the field should either not allow

you to enter the extra characters,

or provide a useful error

message.

If you paste a large number of

characters into an “unlimited”

field, the program should not

break or crash.

Test that each type of user only

has access to the set of actions

that they are supposed to have.

A user of a certain type should

not have access to actions which

should only be performed by a

different type of user.

User Interface Testing

User interface testing is making sure that the user interface itself is

working properly. This is different from testing the underlying

program, which is done during functional testing. Table 3 shows some

types of tests to run on your user interface:

Table 3: Examples of User Interface Tests

Action Expected Result

Check spelling and grammar, on

all pages, all error messages, and

all popup dialogues.

There should be no spelling or

grammar issues. If exact text was

included in the requirements, it

should be there exactly as

specified.

Click all buttons and links. All buttons should do what they

say they will.

All links should go where they

say they will go.

“As far as the customer is

concerned, the interface is

the product.”

- Jef Raskin

10 System-Level Testing Principles for Web-Based Software Applications

 High-Level Test Areas to Consider

Action Expected Result

Make sure that all expected

buttons are present on each page,

popup dialogue, and error

message.

This includes all buttons listed in

the requirements, as well as

buttons that are standard for user

interfaces and that are expected

by users.

All expected buttons should be

there, and should work properly.

A popup dialogue box which

allows a user to perform an

action should have a cancel

button, in case the user does not

want to perform the action after

all.

A popup error message, which is

just informing the user about

something, should not have a

cancel button.

A cancel button should close the

dialogue box and actually cancel

the action.

Check formatting and pictures. Nothing should look strange or

out of place.

All pictures should load

properly.

No text should be cut off on a

button. If it is, you should be

able to hover over the button and

see the full text in a tool tip.

Click on all drop-down lists. All drop-down lists should have

the correct options and no extras.

You should be able to

successfully select each option

from a drop-down list.

No text should be cut off inside a

drop-down list. If it is, you

should be able to hover over the

list item and see the full text in a

tool tip.

Read all labels and instructions. Labels and instructions should

be clear and understandable.

Nothing should be confusing,

misleading, or hard to read.

System-Level Testing Principles for Web-Based Software Applications 11

 High-Level Test Areas to Consider

Action Expected Result

Look at text size and contrast. Text should be large enough for

the average user to read

comfortably, and should contrast

against the background.

If the application is designed to

be accessible to users who can’t

read the screen, load the page

with a screen reader (a device

that describes what is on the

screen).

The screen reader should

describe each graphic, button,

and field so that a user can

understand and use the

application.

Use the keyboard only (no

mouse) to navigate through the

application.

You should be able to get to

every field on every page in a

logical order, using only the

keyboard.

Data Testing

Data testing is making sure that data is moved around the system

correctly. There are two main kinds of data testing:

1. Data load testing – testing to make sure that any data loaded

into the system during deployment (when the application is

installed or upgraded to a new version) is loaded correctly.

2. Verifying data against the back end – testing to make sure

that data is moving correctly between the application and any

back-end databases (data storage areas not visible to the user).

This section also discusses how to set up data for testing purposes.

Data load testing

If data will be loaded into the system when the application is deployed,

you will need to make sure that it will load correctly. This involves

making sure that:

• All necessary data is loaded.

• No extra data is loaded.

• The data that is loaded is correct.

12 System-Level Testing Principles for Web-Based Software Applications

 High-Level Test Areas to Consider

There are two main ways of accomplishing this.

1. Spot-checking. Check some representative sample data. It is a

good idea to also check the total number of records in the

database, to make sure the correct amount of data has been

loaded.

2. Reviewing everything. Retrieve all of the loaded data from the

database and compare it with the data that was supposed to be

loaded. This takes longer, but is more accurate.

Figure 2 below shows how to get both sets of data onto your computer

so you can compare them.

copy of data to tester’s
computer

Back-end
database

Data to be
loaded at
deployment

Tester’s
computer

send query

retrieve data

loaded to
database

Figure 2: Comparing the planned data load

with the actual loaded data.

System-Level Testing Principles for Web-Based Software Applications 13

 High-Level Test Areas to Consider

Verifying data against the back end

You need to make sure that data is moving correctly between the

application and the back-end database, as shown in Figure 3. To do

this, change some of the data in the database and make sure you see

the change in the web application. You should also test that if you

change the data in the web application, you will see the change in the

back-end database.

You should do this for each type of data in the database, and for each

method of changing the data in the web application.

Setting up test data

When testing a web application, you will often have to set up test data

that you will need while running your test cases. For example:

• You may need to set up some test users that have features you

want to test. For example, you may want to run tests while

logged in as a user with a certain account type, or of a certain

user type.

• You may need to create some records with certain features. For

example, if your application classifies records into different

categories, you may need several records from each category.

• You may also need to change test your test data while you are

testing. For example, you may need to set a field in the

database to a certain value to lock out a test user’s account. If

you later need the account to be unlocked, you will have to

change the value in the database again.

You can sometimes create and modify your test data using the

application itself. Other times, you may have to add test data directly

into the back-end database in the test environment.

Web
application

data

Back-end
database

Figure 3: Normal

flow of data.

14 System-Level Testing Principles for Web-Based Software Applications

 High-Level Test Areas to Consider

Security Testing

Security testing is making sure that only authorized users can access

the application, or particular parts of the application. You will have to

do this kind of testing if users have to log in to the application to

access all or some of its features. Table 4 gives some examples of

security testing:

Table 4: Examples of Security Tests

Action Expected Result

Try to log in with the wrong

password.

You should not get into the

application.

Try to log in with a non-existent

user name.

You should not get into the

application.

Log out of the application and

then use the “back” button on

your browser.

You should not be taken back to

the page you were on and re-

logged in.

Instead, you should get a

message telling you that you will

have to log in to access the page.

Delete or freeze an account and

then try to log in to that account.

You should not get in to the

application.

Try the maximum number of

incorrect login attempts.

The user’s account should be

frozen for a specified length of

time before the application

allows the user to try again.

While logged out, try to go to a

page that you have to be logged

in to access. Paste the URL of

the page directly into your

browser.

You should get an error message

telling you that you will have to

log in to access the page.

While logged in, try to go to a

page that you do not have

permission to access. Paste the

URL directly into your browser.

You should get an error message

telling you that you do not have

permission to access the page.

System-Level Testing Principles for Web-Based Software Applications 15

 High-Level Test Areas to Consider

Performance Testing

Performance testing is testing the system under heavy loads to make

sure that it doesn’t break, or if it does break, that it fails gracefully

with a warning to the user.

You will probably have to use simulation software to do some of your

performance testing.

Table 5 gives some examples of performance tests:

Table 5: Examples of Performance Tests

Action Expected Result

Simulate a large number of users

accessing the system all at once.

The application should respond

normally to users without

slowing down.

If the application does slow

down, it should display a

message telling users that the

system is experiencing delays.

No user requests should be lost,

even if the application has

slowed down dramatically.

Upload a large amount of data

while logged in as one user. On

another computer,

simultaneously log in as another

user.

The other user should not notice

the application slowing down

during the first user’s data

upload.

Browser/Operating System Testing

When testing a web application, you should make sure that it works

properly using the major web browsers and operating systems that

users are likely to be using. Don’t forget to include mobile browsers if

your users are likely to be using smartphones or tablets.

Do a little research to find out which browser/operating system

combinations are used by most of the intended users of the application.

You don’t have to test every possible browser and operating system—

just those which a significant number of your users will be using.

You also do not have to re-test the entire application with every

browser/operating system combination you are testing. Pick one main

16 System-Level Testing Principles for Web-Based Software Applications

 High-Level Test Areas to Consider

browser/operating system combination and use it to run most of your

test cases.

Then go back with the other browser/operating system combinations

you are testing, and do the following:

• Test a selection of success paths from your functional test

cases.

• Run a selection of test cases from your user interface testing

section.

• Test that all buttons and links work.

• Test user actions that might differ between browsers. For

example, loading pages, selecting options from drop-down

lists, viewing pictures, viewing text formatting, and sending

system-generated emails.

Regression Testing

Regression testing is re-testing areas that have already been tested.

This is done to make sure that nothing has been broken since the area

was tested.

Testing unchanged features from previous versions

This type of regression testing is done when the software you are

testing is an upgrade to an existing application, rather than an entirely

new application.

Often when changes are made to one area of an application, other

areas are accidentally broken. Regression testing is used to make sure

these issues are found before the software is released.

This can be done using high-level spot-checking of the basic functions

in the area you are testing. It helps to have a copy of the test plan from

when the area was first tested.

Sometimes this is done using an automated test suite—a set of test

cases that were previously programmed into an automated testing

program. At the end of your test cycle you might add some of your

new test cases into the automated regression suite for future regression

testing.

System-Level Testing Principles for Web-Based Software Applications 17

 High-Level Test Areas to Consider

Testing bug fixes

After you have reported an issue that you found while testing and it

has been fixed, you will need to retest it. There are two parts to

retesting a bug fix:

1. Make sure the issue you reported is actually fixed. Go

through the steps you described in the bug report when you

reported the issue, and make sure that the issue is no longer

there.

2. Make sure that the fix has not broken anything else. Do a

quick check of surrounding and related features, to make sure

that nothing obvious has been broken. You will be doing a

more thorough check at the end of the test cycle.

Regression testing at the end of the test cycle

Once you have finished all of your testing, including retesting all bug

fixes, you will need to run a set of regression test cases.

You should select these test cases from the set of test cases you have

just finished running. Choose a set of test cases that cover as much of

the application as you can in as few test cases as possible. Pay extra

attention to any areas of the application that had a lot of bug fixes and

updates during the test cycle.

This set of regression test cases is run to double check that nothing has

been broken by updates and bug fixes during the test cycle.

18 System-Level Testing Principles for Web-Based Software Applications

 Glossary

Glossary

application – a computer program designed to perform a particular

task.

automated – done by a machine rather than a person.

back end – part of the application not visible to the user.

break – to get into a state where something that was working before is

no longer working properly, but the entire program has not crashed.

browser – a program used to access web pages.

bug – a problem found in a computer program.

bug fix – a small software update that fixes an issue that was found

and reported.

bug report – a report written by a tester who has discovered an issue

in the software they are testing. It describes the problem in detail,

including a step-by-step recipe to reproduce it.

crash – to get into a state where the entire program freezes or shuts

down.

database – a structured collection of data.

deployment - when an application is installed or upgraded to a new

version.

drop-down list – in a graphical user interface, a list of choices that

drops down if you select or hover over a menu item. You can move the

mouse or keyboard down the list and select one of the items in the list.

field – the smallest unit of storage in a database. A single record in a

database can have multiple fields.

operating system – a program that manages all of the other programs

on a computer.

query – to send a command to a database, such as a request to retrieve

data.

System-Level Testing Principles for Web-Based Software Applications 19

 Glossary

record – a piece of information stored in a database, made up of the

information stored in one or more fields.

release – to make the application available to customers.

representative sample – a smaller number of items that accurately

reflect the whole population.

screen reader - a device that describes what is on the screen. This

kind of device is used by people who cannot read the screen

themselves.

simulation – a software model that behaves as if it is the actual

process it is simulating.

specifications – detailed requirements and descriptions of how

something will be made and what it will look like.

test cycle – the period of time when you are actually testing an

application. If the software is still being developed as you are testing,

you may have multiple test cycles before it is ready to release to

customers.

test environment – a server where you can test a web application

without it being visible to anyone else. Includes test versions of the

web pages and any back end databases.

test case – a step-by-step checklist describing how you plan to test one

thing. Each test plan has many test cases associated with it.

test plan – a document which describes what you are planning to test,

and gives a high-level description of how you plan to do it.

tool tip – a box with text in it that appears when you hover the mouse

over an element in a graphical user interface.

URL – Uniform Resource Locator. A web address (for example,

http://www.google.ca)

http://www.google.ca/

